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Abstract 

This paper shows how the systematic use of the “Chu construction” can both strengthen 
and simplify the rather complicated constructions used in the original papers and lec- 
ture notes on *-autonomous categories. In effect, representation data are substituted 
for topological and, although this loses topological information, it retains just the right 
amount. 

1. Introduction 

The main purpose in [l] was to explore the notion of a category that was 

both autonomous (symmetric, monoidal, closed) and also had a duality. We 

were interested in the case in which the duality was mediated by a dualizing 

object, call it I, so that the dual of an object was the internal horn into 1. A number 

of examples were constructed, with a fair amount of work. They were mainly 

categories of topologized objects (more precisely, uniform space objects, but, beng 

groups, this made no practical difference). The categories were full subcategories 

defined by some sort of completeness condition that was hard to describe and even 

harder to verify. At the end of the monograph was a paper by P.-H. Chu that 

contained the essentials of his MSc. thesis. This paper described another, rather 

formal, construction of a class of *-autonomous categories. The main purpose of this 

“Chu construction” was to demonstrate that there were plenty of *-autonomous 

categories. It was never really anticipated that the construction itself would give 

interesting categories. 
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In the meantime, J.-Y. Girard created linear logic, which can be thought of as the 
logic of dealing with limited resources or, more prosaically, as the logic of additive 

categories, just as classical and related logics are the logics of one or another class 
of toposes. (It is not true that all models of linear logic are additive, but very 
many are.) In its original formulation, at least, linear logic was to have linear 
conjunction, disjunction and implication as well as linear negation. These are, in 
fact, the tensor cotensor (see below) and duality in a *-autonomous category. 
Girard also supposed one more operation, the ! (and it dual ?; one proposal is 
to call them bang and whimper) that is not part of the definition of *-autonomous 
categories. The basic idea is that if A is a resource, then !A is an indefinite supply of 
copies of A. For example, if you are programming in a functional programming 
language in which functions always consume their arguments, the store is still a source 
of an indefinite number of duplicates of any resource that is kept there. See [5] for 
more details. 

For these reasons, *-autonomous categories, expecially those with !, have become 
more interesting as models of linear logic. It comes as some surprise and considerable 
interest to learn that in fact, the Chu construction can basically replace the complica- 
tions of topology and completeness that characterized [ 11. More precisely, it is shown 
that in two of the cases considered there, at least, a certain full *-autonomous 
subcategory of the Chu category (the separated, extensional objects) is fully embedded 
(in two ways, actually) into the category of topologized objects, preserving its *- 
autonomous structure. Moreover, the image categories are not defined by any 
completeness conditions, only by their topologies being either maximal or minimal for 
their dual spaces. Thus, the completeness conditions of the original paper are seen to 
have been unnecessary. 

We have not looked at the other examples from [l], but there is little reason to 
doubt that the results would be the same. 

I must mention that this new look at the Chu construction was motivated by results 
of V. Pratt and his students who discovered some remarkable properties of these 
categories. I should also mention that D. Pavlovic has discovered that in many cases 
of interest, the ! operator exists for the separated extensional Chu category. Thus, 
these categories are models of the full linear logic. 

2. The Chu construction 

In this section, we will be dealing with a category y that is autonomous and, we 
assume without further mention, has pullbacks. 

Suppose v is a symmetric monoidal closed (hereafter called autonomous) category 
and K is an object of 9’-. Then the category we denote Chu (v, K) has as objects 
(V, I”, (-, -)) where (-, -) : V @ V’ + K is a morphism of -Y-. We will normally 
omit explicit mention of the pairing (-, -). A morphism (f, f’) : (V, V’) + (W, W’) is 
a pair of arrows of v, f : V + W and f’ : W’ + V’ that satisfy the identity symbolized 
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by the equation (fu, w’) = (v, f ‘WI), which is to say that the diagram 

W@ w’ 
(6 -> 

,K 

commutes. Then ~4 = Chu(V, K) is self-dual, the duality being the one that takes 
(I’, V’) to (V’, I’) and similarly on arrows. Moreover, d is also autonomous. To see 
that, let us denote by V- W the internal horn in V of I/ into W. 

First, we observe we can enrich d over Y by internalizing the definition of the 
external horn. Namely, we define V” ((I/, V’), (W, W’)) by noting that the pairing of an 
object (I/, V’) determines by exponential adjoint both a map I/ + (V’- K) and a map 
V’ + (I’- K). Using these, along with the isomorphisms I/- (W’- K) g 

vg W’- K 2 W’*(V-oK), define Y((V, V’), (W, W’)) by requiring that the dia- 
gram 

W’-o ( V4 K) - (VEI W')+K 

be a pullback determines not only an object but also an arrow V ((V, V’), 

(W, W’))+((V@ W/)-K) and thus an object (Y((V, V’), (W, W’)), (V@ W’)) 

of d, which is defined to be the object (V, V’)-o (W, W’). This defines the 
closed structure. The monoidal structure is given by (V, V’) @ (W, W’) = 

((V, V)*(W’, W))*, which is (V 8 W, Y((V, V’), (W’, W)). The unit for the tensor is 
given by (T, K), where T is the unit for the tensor in Y and T 0 K -+ K is the 
canonical isomorphism and the dualizing object is (K, T). It is easily shown that 
(V’, V) z ((V, V/)-o (K, T) and that we have a *-autonomous category. Details are 
found in [3]. 

Following Pratt, we will call an object of Chu (V, K) a Chu space (of V, with respect 
to K). There are a couple of reasons for calling it a space. For one thing, the main 
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thrust of this paper is to show that it is equivalent to spaces in some cases. For 
another, an object of, for example, Chu (Set, 2) is a set S, together with a set S’ 
equipped with a map S’ + 2 ‘. Should that map be injective (the extensional case 

described below), then S’ is simply a set of subsets of S and so the beginnings of 

a topology. 

2.1. Separated and extensional Chu spaces. Aside from the symmetric version of the 
definition of Chu space, there are two one-sided versions. The first views such a space 
as having objects V and I/’ and an arrow V’ --f V- K. If this arrow is injective, then 

I/’ can be viewed as an object of (not necessarily all) arrows I/ + K. Two arrows are 
equal if and only if they are equal at every “element” of I/. The term that logicians use 
to describe this property of functions is extensionality, so we will call the Chu space 
extensional when V’ + V- K is manic. More generally, given a class 4 of mor- 
phisms (usually monomorphisms), we say the Chu object is &!-extensional if 
I/’ -+ V/‘-K belongs to 4’. 

Similarly, we can view a Chu space as an object V equipped with an arrow 
I/ + V’- K and ask that this arrow be manic and think of that as meaning it 
separates points of I/. Accordingly, we will say that the Chu space is separated (resp., 
A-separated) if that map is manic (resp., belongs to A). 

2.2. The separated reflection and extensional coreflection. We suppose now chosen 
a factorization system S/4 that will not change. In order to avoid over complicated 
notation, we will write Chu,(Y, K), Chu,(V, K) and Chu,,(V, K) for the full sub- 
categories of &-separated _&-extensional, and both &-separated and A-extensional 
objects, respectively. 

2.3. Proposition. Suppose &/A is a factorization system on V and also suppose thatfor 

all e E b, e-K E A. Then the inclusion Chu,(V, K) + Chu(V, K) has a left adjoint 
s and the inclusion Chu,(V, K) -+ Chu(-l’, K) has a right adjoint e and these operations 
on Chu(V, K) commute. 

This is proved in [2, Proposition 5.21 under slightly different assumptions. The 
arguments remain valid, however. In that paper, what we are calling separated and 
extensional are called left and right separated, respectively. 

The result of this is that the inclusion Chu,,(-t’, K) -+ Chu(V, K) has a left inverse 
and the former category is complete if V is. See [2] for details. 

The following result was proved in that paper under the assumption that V was 
Cartesian closed. It has since been extended to the general case by Pavlovic [S]. 

2.4. Theorem. Suppose that V has cofree coalgebras (commutative, associative, unitary) 
for its tensor product and has complete subobject lattices. Thenfor afactorization system 
&/A! satisfying the condition that e E d implies e- K E A, the category Chu,,(-l’, K) 
has cofree coalgebras as well. 
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3. Linearly topologized vector spaces 

By a linearly topologized vector space, we mean a hausdorff topological vector 
space that has a neighborhood base at 0 consisting of open vector subspaces. Let us 
call the category of linearly topologized spaces LTS. 

In this section, we show that when V is the category of discrete vector spaces over 
a discrete field and d and &Y are the classes of epimorphisms and monomorphisms, 
respectively, then the category Chu,,(V, K) is equivalent to two different sub- 
categories of LTS. 

There is an obvious functor F : LTS + Chu,,(V, K) that takes the space A to (I A 1, 

Horn@, K)). The first factor is the discrete space underlying A and the second is the 
space of continuous linear functionals on A. 

3.1. Linearly compact and sublinearly compact spaces. A vector space is called linearly 

compact if it has the finite intersection property with respect to closed affine subsets. 
We list various properties of linearly compact spaces that we need. These facts are all 
proved in [7], where linear compactness was first defined. 

(LCl) A product of linearly compact vector spaces is linearly compact. 
(LC2) A closed subspace of a linearly compact vector space is linearly compact. 
(LC3) The quotient of a linearly compact vector space by a closed subspace is 

linearly compact. 
(LC4) A linearly compact space is discrete if and only if it is finite dimensional. 
(LC5) A vector space over a field K is linearly compact if and only if it is 

isomorphic, algebraically and topologically, to a power of K. 
Let us call a space sublinearly compact if it is isomorphic to a subspace of a linearly 

compact space. In light of (LC5), this means that its topology is the weak topology for 
a set of continuous functionals. Let LC denote the category of linearly compact spaces 
and SLC denote the full subcategory of sublinearly compact spaces. Notice that in any 
object (V, V’) of Chu,,(V, K), we may view V’ as a set of functionals on I/. We define 
a functor W : Chu,,(V, K) -+ LC that assigns to each (V, V’) the space I/ equipped 
with the weak topology for the functionals in I/‘. Its image is clearly included in SLC. 

3.2. Strongly topologized spaces. We now define a second functor S : Chu,,(V, K) + 
LC as follows. Let A = S(V, V’) denote the space whose underlying vector space is 
I/ and in which a linear subspace U G V is open when LJl E V’. Recall that we are 
thinking of I/’ as a set of functionals on V, so this simply says that every functional on 
I’ that vanishes on U is in V’. This does define a topology since if both U: and U: are 
included in I”, so is their sum which is (Uln Uz)‘. Every functional in I/’ is 
continuous in this topology. For, if 4 # 0 is in I/‘, then U = ker 4 is a subspace of 
codimension 1, whose annihilator is therefore of dimension 1 and thus generated by 4. 
Thus, U’ G V’ and so U is open. It follows that since (V, V’) is separated, there is, for 
each 21 E V, a 4 E V’ such that 4(v) # 0 and since 4 is continuous, its kernel is an open 
subspace that does not contain u and so the topology is hausdorff. 
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These topologies are not the same in general. In fact, let V be an infinite-dimen- 
sional vector space and V’ the space of all continuous functionals on I/. Then every 
linear subspace is open by that definition. Thus, S(V, V’) is discrete. But no infinite- 
dimensional discrete space can be in SLC since in the weak topology for the set of all 
functionals, the set of all linear subspaces of finite codimension is a topology in which 
all functionals are continuous and is clearly the weakest such. 

We will often refer to these topologies as the weak and strong topologies and say 
that a space is weakly or strongly topologized if it has one or the other. 

3.3. Theorem. S -I F + W and the adjunction morphisms SF + id + WF are isomor- 

phisms. 

Proof. Let (V, V’) be an object of Chu,,(V, K). Suppose that A is an object of LTS 

andthat(f,f’):(IAl,“Y(A,K))~(I/,I/”).Thenf:IA)~T/andwhenevercbEV’,~of 
is a continuous linear functional on A. Now let U c W(V, V’) be an open subspace. 
Then there are a finite number of functionals +1, c$~, . . . , & such that 

U = ker(4,)nker(qQn . ..nker(&). Since all of $1 01; &of, .,. ,&,ofare continu- 
ous, it follows that 

f-‘(U) =f-‘(ker($,))nf-‘(ker(&))n ... nf-‘(ker(&)) 

is open in A. Thus, f is continuous. Now suppose that f: A -+ W (V, V’) is a continu- 
ous linear map. Suppose that 4 E V’. Then 4 of is a continuous functional on A so 

that (f,-of):(IAl,T(A,K))j(I/, v’) is a map of Chu,,(V, K). This shows that 
F-I W. 

Suppose that (f,f’) : (I/, V’) + ([AI, Y(A, K)) is a map of Chu,,(V, K). Let U be an 
open linear subspace of A. Then A/U is discrete which means that every linear 
functional on I A) that vanishes on U is in V(A, K). But then f’ =- oftakes every such 
functional into V’ which means that every functional on V’ that vanishes onf - l(U) is 
in I/’ and hence thatf - l(U) is open in S( V, V’). Now suppose thatf: S( V, V’) + A is 
continuous. Let 4 be a functional on A. Then 4 of is a continuous functional on V. 
Thus, ker (4) is open in S( V, V’). Thus, every linear functional on I/ that vanishes on 
ker (4) of which q5 of is one, belongs to V’. Thus, (f; - of) : (V, V’) + (I Al, V( V’, K)) is 
a morphism. This shows that S -1 F. 

SF -+ id is an isomorphism if and only if F is full and faithful if and only if id -+ WF 
is an isomorphism, so it suffices to show that one of these holds. So let (V, V’) be an 
object of Chu,,(V, K). Then every continuous linear functional 4 on S(V, V’) has 
a kernel that is open, which means that every functional on V that vanishes on ker (4), 
of which $ is one, belongs to V’ and so V’ = V(S(V, V’), K). Cl 

3.4. Corollary. If A is an object of LTS, then SFA and WFA have the same underlying 
vector space and the same set of continuous linear functionals as A. Moreover, among 
topologies on the underlying vector space of A that have the same set of continuous linear 
functionals, SFA is the finest and WFA is the coarsest. 
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Proof. It is part of the definition that SFA and WFA have the same underlying vector 
space as A. Moreover, the set of linear functionals is the second component of 
FA = FSFA = FWFA. The adjunction arrows SFA -+ A + WFA imply that the topo- 
logy of A lies between those of SFA and WFA. If B has the same underlying vector 
space and the same set of continuous functionals, then FA = FB so that 
SFA=SFB-rB+WFB= WFA. 0 

3.5. Corollary. The image of W is the category SLC. 

Proof. The definition of an object of SLC is that it has the weak topology for a set of 
functionals. In the weak topology for all the functionals, a set is open if and only if it 
has the form ker $1 n ... n ker &, for linear functionals $1, . . . ,&. But the kernel of 
any linear functional is continuous in the given topology, so such an intersection is 
also open. Conversely, suppose a linear subspace is open in the topology induced by 
an embedding A E C, where C is linearly compact. Then it is the intersection with A of 
an open subspace of C. But any open subspace of C has finite codimension, which 
implies that it is the intersection of the kernels of a finite number of linear functionals 
on C, a fortiori on A. But then the given subspace is open in the weak topology for the 
functionals. 0 

It is not as easy to describe the image of S. Suffice it to say that A belongs to the 
image if and only if there is no stronger topology on A that has the same set of 
functionals as A. For example, the discrete spaces clearly have that property, while 
a discrete space is in SLC if and only if it is finite dimensional. 

3.6. The *-autonomous structure. Since Chu,,(V, K) is a *-autonomous category with 
bang and whimper, the same is necessarily true of the equivalent categories SLC and 
the full image of S. In the case of SLC it is fairly easy to describe the *-autonomous 
structure. The dual of A is simply Hom(A, K), topologized with the weak topology 
induced on it by the evaluations at elements of A. 

3.7. Proposition. If B is weakly topologized, then a homomorphism IAl + ) BI under- 
lies a continuous homomorphism if and only if it induces a map Hom(B, K) + 
Horn (A, IS). 

Proof. Supposef: 1 Al -+ 1 BI is not continuous from A to B. Then there is an open sub- 
space U G B such that_/-‘(U) is not open in A. Since B is weakly topologized, there 
are functionals 41, . . . , & on B such that U = ker 4i n ... n ker 4”. But then at least 

one offo4i, . . . ,fo&, is discontinuous, elsef-i(U) = ker(fo$,)n . ..nker(fo&) 
would be open in A. 0 
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This proposition implies that 

Horn (A$) - Hom(B,K)~Hom(A,K) 

IL-4 -IBI -Hom(~Al@Hom(B,K),K) 

is a pullback, so that FA-0 FB is, according to the construction of [2], the extensional 
reflection of (Horn (A, B), 1 Al @I Hom(B, K)). The structure map 

Hom(A,B)@lAl@Hom(B,K)+K 

takesf@ a @ /I H P(f(a)) forf: A + B, a E IA( and p: B -+ K. Thus, in SLC, A-B is 
Hom(A, B) with the weak topology for the set of functionals determined as above by 

lAlOHom(B,K). 

3.8. In fact, in this case, the object (Horn (A, B), ) Al 0 Hom(B, K)) is extensional. To 
see this, we require a lemma. 

3.9. Lemma. Let A be an object of LTS. Then for all linearly independent elements 

aI, a2, . . . ,a, E A, there is a continuous functional a: A + K such that c?(aI) = 1 and 

E(az) = tl(a3) = ... = ol(a,) = 0. 

Proof. By induction, there is a functional CI’ such that a’(al) = 1 and cr’(a2) 
= . . . = a’(a,_ I) = 0. If cr’(a,) = 0, we are through, otherwise we observe that 

al - a,/a’(a,), a2, . . . , a,_ I is another set of n - 1 linearly independent elements and 
so there is a functional cl” with cl”(aI - a,/a’(a,)) = 1 and cl”(aJ = ... = @“(a,_ 1) = 0. 

This implies that a”(a,) = 1 + a”(a,)/a’(a,). Now we want to determine u and v E K so 
that c1 = ua’ + UN” has the required properties. This requires determining u and v so 
that 

ucr’(aI) + ufx”(aI) = 1, 

which leads to 

ua’(a.) + &‘(a,) = 0, 

u + ~(1 + cl” (a,)/cr’(a,)) = 1, ua’(aJ + &‘(a,) = 0. 

whose determinant is a”(a,) - a’(a,) - &(a,) = - a’(a,) # 0 and so there is a solu- 
tion. 0 

Now suppose that I:= I ai @ $i is a non-zero element of) AJ @ I B* 1. We can suppose 
without loss of generality that a,, . . . , a, are linearly independent and that bl, . . . ,c$,, 
are non-zero. Then choose a functional CI on A such that a(al) = 1 and 
a(a2) = ... = a(a,) = 0. Let b E B be an element such that b,(b) # 0. Letf: A -+ B be 

defined byf(a) = a(a)b. Then Cy=l4i(f(ai)) = cP1(f(al)) = +1(b) # 0. 
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For the category that is the image of S, the duality and internal Horn do not have 
such a simple description. We can give some insight by first describing the category of 

locally linearly compact vector spaces. 

3.10. Locally linearly compact vector spaces. We define, by analogy with locally 
compact groups, a linearly topologized vector space to be locally linearly compact if it 
has a neighborhood basis at the origin consisting of linearly compact open subspaces. 
For linearly topologized vector spaces, this turns out to be a very easy notion. 

3.11. Proposition. A linearly topologized vector space is locally linearly compact if and 

nly if it has an open linearly compact subspace if and only if it is the direct sum of 

a linearly compact space and a discrete space. 

Proof. The direct sum of a discrete and a linearly compact space is readily seen to be 
locally linearly compact. A locally linearly compact space certainly has at least one 
open linearly compact open subspace. So, suppose that A has at least one linearly 
compact open subspace C. Since C is open, A/C is discrete. But that means that any 
linear splitting of A ++ A/C is continuous. Thus, A = C 0 A/C is the direct sum as 
claimed. 0 

One consequence of this is that there is obviously a duality on the category of 
locally linearly compact vector spaces. 

Recall that a linearly topologized vector space is strongly topologized if no finer 
topology has the same set of linear functionals. 

3.12. Proposition. A locally linearly compact vector space is strongly topologized. 

Proof. Suppose A and B are linearly topologized vector spaces with B locally linearly 
compact and A + B is a bijection that induces an isomorphism on the space of 
functionals. We may suppose without loss of generality that 1 Al = IBI. First, consider 
the case that A is discrete and B linearly compact. Then B z KX for some set X and 
has the further property that every linear functional on B is continuous. But if X is 
infinite, then any ultrafilter on X gives rise to a discontinuous functional. Thus, X is 
finite and B is also discrete. Next, consider the case that A is arbitrary, but B is linearly 
compact. Let U be an open subspace of A. Then A/U is discrete and thus every 
functional on A that vanishes on U is continuous on A and hence on B. But U is the 
intersection of the kernels of all the functionals that vanish on U and thus U is also 
closed in B. Then A/U -+ B/U is still bijective and induces a bijection on the set 
of continuous functionals. By the first case, B/U is discrete, whence U is open in B. 
For the general case, write B = C Q D where C is linearly compact and D discrete. 
From continuity, it follows that D is a discrete subspace of A and C is a closed 
subspace of A, which, by the preceding case, must be linearly compact. It follows that 
A *B. q 
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We now extend the duality functor to the category LTS. Let I_.* denote the dual of 

a localy linearly compact vector space L. For an arbitrary linearly topologized vector 
space A, let A* denote the vector space Horn@, K) topologized with the weak 
topology for all the maps A* --) L* induced by all L + A, with L locally linearly 

compact. This extends the duality in the sense that if A is locally linearly compact then 
there is a final object in the category of locally linearly compact spaces over A, namely 
A itself and so the weak topology on the dual is just that of A*. 

Not every object is reflexive for this duality. Clearly, the locally linearly compact 
spaces are. 

3.13. Theorem. The natural map 1 Al + 1 A** 1 is a bijection. It is not generally continu- 

ous, but the inverse A** -+ A is. It is an isomorphism if and only if A is strongly 

topologized. 

Proof. We must show that every functional on A* is evaluation at a unique element 

of A. Choose a set { fi : Li -+ A} of maps of locally linearly compact spaces to 
A such that A* is embedded into flL:. Suppose g: A* + K is a continuous linear 
functional. Then g - 1 (0) is open in A*, so that there is an open subspace U G nLT 
whose intersection with A is g-‘(O). An open subspace in the product topology 
includes the product of all except a finite set of factors. Let il, . . . , i, be that finite set of 
factors. Then there is an open linear subspace V E Li*, x ... x Lir, such that 
U = n-‘(V) under the projection n:I_IiB,LT + fly= 1 L$. Then we have the following 
commutative diagram: 

A* - I7 L’ IGI I 

I g q: , L,' 
I 

I 
K-II”_ L’IV 

J-1 1, 

Since n;= 1 Lc/V is discrete, the bottom arrow splits. This implies that there is 
a continuous linear functional h : nJ= 1 L$ -+ K such that k 0 IZ extends g. Now n;= r L$ 

is a locally linearly compact space, so that k is evaluation at an element 
I = (lj) E nl= 1 Lt. One now sees that g is evaluation at CJ= 1 fi,(&,) E A. The fact that 

this element is unique is a consequence of the sufficiency of functionals, which follows 
immediately from the fact that the topology is separated. This shows that the natural 
map is bijective. 

To show that A** -+ A is continuous, let U be an open linear subspace of A. Then 
A + A/U is continuous and the latter is discrete. Then (A/U)* + A* and finally 
A** + (A/U)** = A/U is continuous, so that U is also open in A**. 
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It follows that A* = A***. In fact, they have the same elements and the dual of 
A** + A gives the map in one direction, while the other is an instance of the same 
map. 

If A is strongly topologized, then A** must have the same topology since no 
stronger topology can have the same functionals. Suppose A is not strongly 
topologized. Let B denote A retopologized with the strong topology. I claim that 
B* = A*. They have the same elements, so it is sufficient to show they have the same 
topology. Suppose that L is locally linearly compact and f: L + A is continuous. 
Suppose that U is a linear subspace that is open in the topology on B. Then every 
functional on B that vanishes on U is continuous. Since A and B have the same 
functionals, it is also true of A that every functional that vanishes on U is continuous. 
The intersection of the kernels of all such functionals is U, so that U is closed in A and 
f - ’ (U) is closed in L. Then L/f - ’ (U) is locally linearly compact and every functional 
on it is continuous, whence L/f-‘(U) is discrete and thusf - ‘(U) is open in L. But 
this means thatf: L + I3 is continuous and thus B* has the same topology as A*. 0 

3.14. Example. This is an example to show that not every space is reflexive. Let A be 
an infinite-dimensional space topologized with the weak topology for all functionals. 
Then A is not discrete because the topology on A is that a subspace is open if and only 
if it has finite codimension. On the other hand, every functional is evidently continu- 
ous, so the associated strong topology is discrete. 

3.15. The *-autonomous structure on strongly topologized spaces. What we have just 
seen is that the image of L can be viewed either as the strongly topologized spaces or 
as the spaces that are reflexive for the duality just described. It follows that full 
subcategory of linearly topologized vector spaces is also *-autonomous. The duality is 
the one just described. It does not seem quite possible to describe the internal horn, 
but we can use the result for the first part to say that A + B has underlying vector 
space Hom(A, B) with the topology gotten by first using the weak topology for the 
functionals induced by IAl 0 IB*l and then forming the double dual . Similarly, the 
tensor product A @ B has I Al @ IBI for underlying vector space and the continuous 
functionals are those from Hom(A, B*) r Horn@, A*). 

4. Abelian topological groups 

The duality theory of locally compact abelian groups is well-known. In [SCAT], 
I showed that there are *-autonomous categories of topological abelian groups that 
are complete and cocomplete, include the locally compact groups and for which the 
duality reduces to the standard duality for those groups. The arguments are ad hoc 
and the categories are defined by somewhat obscure completeness conditions that in 
practice are likely impossible to verify. In this section we show how the systematic use 
of the category Chu(Ab, K), where Ab is the category of abelian groups and K is the 
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circle, simplifies and clarifies everything (and, by the way, eliminates the completeness 

conditions). 
In this section, we will let I/, V’, W, . . . , denote abelian groups and “group” will 

always mean abelian group. We will denote by A, B, A’, . . . , topologized abelian 
groups. A character on A will mean a homomorphism \ A( + K, where (Al is the 
discrete group underlying A. A continuous character, of course, is one that is 
continuous in the topology on A. 

Say a topological group is subcompact if it is isomorphic to a subgroup of 
a compact group. We say that a group is SPLC if it is a subobject of a product of 
locally compact groups. SPLC denotes the full subcategory of all such groups. All the 
groups we deal with here are in this category. 

An object (V, V’) of Chu(Ab, K) is extensional if and only if V’ is isomorphic to 
a group of characters on V and it is separated if those characters separate points. We 
will be dealing mostly with objects of Chu,,(Ab, K) and will tacitly suppose that I/’ is 
a group of characters on I/. It is possible, and we will see examples below, for two LCR 
groups to have the same set of continuous characters. Thus, if we are given an object 
(I’, V’) of Chu,,(Ab, K), there is a poset (which conceivably could be empty) of 
topologies on I’ for which the group of continuous characters is exactly I”. 

4.1. Theorem. For any object (V, V’) ofChu,,(Ab, K), the poset @topologies on Vfor 
which V’ is the set sf continuous characters is a complete lattice. 

Before proving this, we must establish some preliminary results. 

4.2. Lemma. Suppose A is a topological abelian group and x: 1 Al -+ K is a group 

homomorphism. Then x is continuous if and only if I- I ( - $, a) is a neighborhood of 0 

in A. 

Proof. The necessity of the condition is obvious. Suppose now that U = x- ’ ( - a, $) 

is a neighborhood of 0. Choose a sequence LIZ = U, U3, . . , U,, of neighborhoods of 
OinA,suchthatUi+UicU~_~.Iclaimthat~-’(-2-”,2-”)~U,.Thisistrueby 
assumption for n = 2. Assume it is true for n. Then for a E U,+ 1, 

2x(a) = x(a + 4 E XV,+ I + U,,,) G x(U,) c ( - 2_“, 2-7, 

whichispossibleonlyif~(a)~(-2”t’,2-’”’1’)or~(a)~(~-2”+‘,~+2-’”’1’),but 
the latter is impossible since also 

s 

x(4 = x@ + 0) E x(U,+ 1 + Un+J G x(U,) E ( - 2-“, 2-7 

The neighborhoods of 0 of the form ( - 2-“, 2-7 are neighborhood base at 0 in K and 
so the conclusion follows. q 

4.3. Theorem. The circle roup is injective in SPLC with respect to the class of embedded 
subgroups. 
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Proof. Suppose A G B. Since B is embedded in a product of locally compact groups, 
we can, without loss of generality, suppose that B is a product of locally compact 
groups, say B = niLi. Suppose X : A + K is a continuous character on A. Let 
U = I-‘( - b, b). Then U = AnUr for some neighborhood U1 of 0 in B. Choose 
a neighborhood U2 of 0 in B such that U2 = - U2 and U2 + U2 c U1. The definition 
of the product topology implies that there is a cofinite subset J E I such that 
Bo =niE,,Li G IJZ. Let Us = Uz + Bo. It follows that Us + Bo = Us, that 
U3 = U2 + B,, G U2 + U2 E U1 and hence that AnU, 5 U. Let p: B -+ B” = B/B0 
be the projection, the latter equipped with the quotient topology, which topologizes it 
as a product of a finite number of locally compact groups, which is therefore locally 
compact. Topologize A” = A/(AnB,) as a subspace of B” (which is not necessarily the 
same as the quotient topology). 

First, note that AnB, is a subgroup of A included in U so that X(AnB,,) 5 ( - $, 

a) and the latter includes no non-zero subgroup so that X(AnB,) = 0. Thus, x 
induces a possibly discontinuous character 11: A” + K. Since U3 is open and 

U3 + B,, = Us, it follows that p(U,) is open in B”. Therefore, if we can 
show that f(A”np(U,)) E ( - a, b), continuity follows from the preceding lemma. 
For a E A, p(u) gp(U3) requires that there be an element b0 E B0 such that 
a+b,EUs. This means that a + b0 =u2 + tie, where u2 E U2 and bbeBO. 
But then a = a2 + (& - be) E U2 + U2 G U1 and thus a E AnUl SE U, whence 

x(a) E ( - $3 a,. 
Since i is continuous, it is uniformly continuous and extends to the topological 

closure of A” c B”. The latter is locally compact and so is any closed subgroup and the 
conclusion is well known on the category of locally compact abelian groups. 0 

In the process of proving this, we have shown: 

4.4. Proposition. Let A E nicI Bi. Then for any continuous character x: A + K, there 
is a cojinite subset J E I such that x vanishes on Ann,,,Bi. 

4.5. Corollary. HOm(niEr Bi, K) E CiEz(Bi, K). 

We now turn to the proof of Theorem 4.1. It is clearly sufficient to show there is 
a finest and a coarsest topology for which V’ is the set of continuous characters, for 
then the poset is obviously a complete sublattice of the lattice of all SPLC topologies 
on I/. The latter is complete because it is a coreflective sublattice of the lattice of all 
topologies. 

For the coarsest, let A denote the group I/ with the topology induced by embedding 
of V into the compact group K”‘. In other words, A has the weak topology for the 
characters in V’. No coarser topology on V can have every element of I/’ be 
continuous. We must show that no other character is continuous in this topology. So, 
suppose that x is a continuous character on A. Since K is injective in SPLC, x can be 
extended to a continuous character on K “‘, which we will continue to denote by x. 
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From Corollary 4.4, there is a finite set x1, x2, . . . ,x. E V’ such that x factors through 

K{X’s -,xn) g K”. The dual of K” is the direct sum of n copies of Z, which means there 

are integers kl, k2, . . . , k, such that forf: {xi, x2, . . ,x,,> -+ K, 

x(f) = k,f(xd + k,f(xJ + ... + kf(xn). 

If we apply this to the case that f= 4(u) for u E V, we see that 

x(4(~)) = k,4(a)(XJ + k,6(u)(Xz) + ... + k,W)(X.) 

= klXl(r) + &z(u) + ... + k&r) 

= 61x1 + kzXz + ... + k&(r), 

which implies that x/V = klXl + kzX2 + ... + k,,X” E I/‘. 

Next, we show there is a finest topology. For a group B of SPLC, let Bb denote the 
group 1BI topologized with the weak topology for its continuous functionals. If A is 
another object of SPLC, say that a homomorphismf: 1 A I+ 1 BI is weakly continuous 
if A --+ Bb is continuous. This is equivalent to supposing that for each continuous 
character x : B + K, the composite x ofis a continuous character on A. It is clear that 
every continuous homomorphism is weakly continuous. 

Now let A# denote the object A equipped with the weak topology for all the weakly 
continuous maps. Since every continuous map is weakly continuous, the topology on 
A” is at least as fine as that of A. Before completing the argument, we show: 

4.6. Proposition. A# has the same continuous characters as A. 

Proof. Choose a set {J;: : A + Bi I i E I} of weakly continuous maps such that the 
induced A# ~ ~iel Bi is an embedding. From injectivity of K, it follows that any 
continuous character on A# extends to a continuous character, say x: n Bi + K. As 
above, there is a finite subset, say (1, . . . , k} c I such that x factors through 
B, x ... x &. SPLC is an additive category so that each such character has the form 

x1 + ... + Xk where, for i = 1, . . . , k, xi is a continuous character and hence so is their 
sum. Thus, x 0 (fi) is also continuous on A. 0 

4.7. Corollary. For any object B of SPLC, Hom(A#, B) E Hom(A, Bb). 

Proof. The definition of # implies that any continuous homomorphism A -+ B b gives 
a continuous homomorphism A# -P B. Suppose that f: A# + B is continuous. Then 
for any continuous character x : B + K, x ofis a continuous character on A#, hence on 
A. Thenf becomes continuous when B is retopologized by the weak topology for its 
continuous characters, that is f: A + Bb is continuous. 0 

Now suppose that B is the same abstract group as A and has the same set of 
continuous characters as A. Then the identity A + B b is continuous so that A# -+ B is, 
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which implies that the topology on B is no finer than that of A. This completes the 
proof of Theorem 4.1. 

4.8. Corollary. Given any topological group, there is ajinest and weakest topology that 

has the same set of continuous characters. 

We will say that the object A of SPLC is weakly, resp. strongly topologized if 
A = Ab, resp. A = A#. Since a group is weakly topologized if and only if it is in SC, we 
already have a name for that full subcategory. We will denote the full subcategory of 
strongly topologized groups by STSPLC. 

Let F: SPLC -+ Chu,,(Ab, K) denote the functor FA = (IA\, Horn@, K)). We de- 
note by S, W : Chu,,(Ab, K) + SPLC the functors that take the object (V, V’) to the 
group V topologized with the strong, resp. weak, topology. 

4.9. Theorem. S-IF -I W and the adjunction morphismsm SF + id + WF are isomor- 

phisms. 

Proof. Let (f,f’):(IAl,Y(A,K))~(V,I/‘) be given. Then f:lAI+V is a group 
homomorphism and whenever x E I”, the composite x ofis a continuous character on 
A. When I’ is given the weak topology for all its characters, f becomes continuous, so 
that f: A --+ W (V, V’). To go the other way, we begin by noting that if x is a continu- 
ous character on W (V, V’), then for any continuous f : A + W (V, V’), every x E T/’ is 
a continuous character on W (V, V’) so that x of is continuous on A. Thus, 
(f, - 0 f ) : (IA 1, V (A, K)) --) (V, I”) is a morphism in Chu,,. It follows that F-I W. The 
fact that WF z id is an immediate consequence of Theorem 4.1. 

Let S(V, I”) = (W (V, V’))“. Then for any object A of SPLC, we have the string of 
isomorphisms 

Hom(S(I/, V’), A) E Hom((W(V, V’))“, A) r Hom(W(V, V’), Ab) 

g Hom(W(V, V’), WFA) r Hom((V, I”), FA) 

since F W E id is equivalent to W being full and faithful. Thus, S-t F. It is a standard 
fact that if a right adjoint of a functor is full and faithful, so is any left adjoint. 0 

It follows that both SC and STSPLC are *-autonomous, as well as being equivalent 
to each other. They are certainly simpler to describe than the *-autonomous catego- 
ries constructed in [SCAT]. What is surprising is that they are equivalent to the 
purely formal category Chu,,(Ab, K), from which the topological information has 
been reduced the bare minimum of knowing when a character is continuous. For 
example, we will see later that one of these two categories includes all locally compact 
groups and the other one does not. 

The duality and internal horn can readily be recovered from those of the Chu 
category. For example, the dual in SC, resp. STSPLC, of a group A is simply 
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Hom(A, K) with the weak, resp. strong, topology on it by A, thought of as a group of 
characters on Horn (A, K). 

The internal horn can be described as follows. Let d be one of the categories 
STSPLC or SC. For an object A of d, SC, let A* denote the dual (with the relevant 
topology). Then FA = ((A 1, (A* I). If B is another object of d, then the fact that F is an 
equivalence on &’ implies that Hom(A, B) E Hom(FA, FB). It follows that the square 

Horn (A,B) 9 Hom(M IBI) 

7 V 

Hom(lB’l, IA’I) - Hom(lAI@lB*l,K) 

is a pullback. Thinking of these as 
groups, this means that the square 

Horn (A$) - I4 41Bl 

taking values in the category of discrete abelian 

is a pullback, which means that FA- FB is the extensional reflection of the pair 

(Hom(A, B), IA I 0 I B* I), with the action given by (f, a @ x) = x(f(a)), forf: A + B, 
a E A and x E B*. Thus, A-B is Hom(A, B) with the strong, resp. weak, topology 
induced on it by I Al 0 I B* I. The same considerations show that A @ B is the 
hausdorff quotient of I A I 0 I B* I with the strong, resp. weak, topology induced on it 
by Horn (A, B*) E Horn (B, A*). 

In this case (Hom(A, B), IAl 0 IB*I) is not extensional. You get an example by 
takingA=[W/ZandB=Z.ThenHom(A,B)=O,whileIA(OIB*I=IiW/Z(OI[W/ZI. 
As an abstract group, R/Z is the direct sum of Q/Z with a torsion free divisible group 
of rank 2’O which means that ) [W/HI z I Q/Zl 0 (RI and then ) [W/El @ 

Irw/Zl g liR[ @ laBI E lx. 

4.10. Locally compact groups are strongly topologized. We have not actually given an 
example of a weakly continuous map that is not continuous. Here is one. The weak 
topology on Z is not discrete since no compact group can have an infinite discrete 
subgroup. Actually, no compact space can have an infinite uniformly discrete sub- 
space since there would have to be a uniform cover in which each element contains at 
most one element of the subspace, clearly impossible. Thus, the given by the inverse of 
the continuous map Z -+ Zb is weakly continuous, but not continuous. The only 
topology that makes that map continuous is the discrete topology, which is clearly strong. 



M. Barr/Journal of Pure and Applied Algebra I1 I (I 996) I-20 17 

In fact, all locally compact topologies are strong. The key to that is the following 
proposition, which is proved by Glicksberg [6] (he credits the statement, but not his 
proof, to unpublished work of Kaplansky’s). 

4.11. Proposition. A weakly continuous map between locally compact groups is con- 

tinuous. 

4.12. Corollary. Let L be locally compact. A weakly continuous map f: L + A in SPLC 

is continuous. Thus, L is strongly topologized. 

Proof. For any A + L’ with L’ locally compact, the composite L -P A + L’ is weakly 
continuous, hence continuous. Since this is true for any such A + L’, the first claim 
follows. Since L” has the coarsest topology for which every weakly continuous map is 
continuous, the topology on L” can be no finer than that of L. Since A” -+ A is 
continuous for all A, we see that L# = L. 0 

For the rest of this section, we let A* denote the character group topologized 
strongly using A as a group of characters. 

4.13. Proposition. Let f: A + B be weakly continuous. Then the induced function 

B* + A* is continuous. 

Proof. The definition of weakly continuous implies that there is a function induced 
from B* + A*. This is continuous if and only if for every continuous map L + A with 
L locally compact, the composite B* + A* -+ L* is continuous. But it is clear that for 
every such L -+ A, the composite L + A + B is weakly continuous, hence from the 
previous proposition is continuous, from which the conclusion is clear. 0 

4.14. Theorem. Let A be an object of SPLC. Then A** = A#. 

Proof. If A + L is weakly continuous with L locally compact, then L* + A* is 
continuous, so that A** + L** = L is continuous. Thus, the homomorphism 
A** + AX is continuous. To go the other way, we observe that by definition A’ is the 
strongest topology that has the same set of functionals as A and since A** is such 
a topology, it follows that the other direction is continuous. q 

5. Application 

In this section, we are going to give an example of how systematic use of the duality 
can clarify and simplify some aspects of the theory of coalgebras. Here we are dealing 
with the category of coalgebras over a field. The field might be topologized itself, but 
we will ignore its topology, if any, and assume it is discrete. 
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5.1. The category of coalgebras. If K is a field, a K-coalgebra C is a vector space 
equipped with a comultiplication 6 : C -+ C @ C and a unit E : C + K that satisfy the 

equations that are dual to those of an associative algebra with unit. The map 6 is 
called the comultiplication and E the counit. In fact, a coalgebra is an associative 
algebra in the dual of the category of vector spaces, that is in the category of linearly 
compact vector spaces. 

A word is needed about the tensor product in that category. If V1 and V, are 
linearly compact vector spaces, there is the ordinary tensor product, which is not 
linearly compact. On the other hand, it does have a topology, the least in which 
U1 0 Uz is open whenever U1 is open in VI and U2 is open in V,. This topology is not 
linearly compact, but it is a uniform topology (as any topology on a group must be) 
and has a completion which is linearly compact. One way of seeing this, as well as an 
alternate defintion of the tensor product is to use the formula V, @ V, = (VP @ V?)*, 

where the tensor on the right-hand side is the ordinary tensor product of discrete 
vector spaces. 

A linearly compact algebra A is a linearly compact vector space, equipped with 
continuous maps p : A 0 A + A and r~ : K --, A that satisfy the usual identities for 
a unitary associative algebra. In point of fact, we could have used the ordinary tensor 
product (with the topology described in the last paragraph) since any continuous 
homomorphism is uniformly continuous and if its codomain is linearly compact, it is 
complete and so the map extends to a continuous map on the completion. Similarly, 
a linearly compact A-module M is a linearly compact vector space that is an 
A-module in such a way that the action A @ M -+ M is continuous. Again, it does not 
matter which tensor product is used, since M is uniformly complete. 

It is now evident that the category of coalgebras is dual to the category of linearly 
compact algebras. 

5.2. Comodules and modules. If V is a vector space over K and C is a coalgebra, 
a right C-comodule structure on V is given by a map V + C 0 V that satisfies the 
duals of the usual identities for module. If V is a linearly compact vector space and 
A a linearly compact algebra, then a left A-module structure on V is given by 
a continuous A @ V + V that satisfies the usual identities. It is clear that if A is the 
linearly compact algebra dual to C, then the category of linearly compact left 
A-modules is dual to the category of left C-comodules. 

It is a standard fact that every coalgebra over a field is colimit of finite-dimensional 
subcoalgebras. The dual theorem, that every linearly compact algebra is a filtered 
limit of finite-dimensional quotients is also long-known, [4], but its proof seems much 
more perspicuous. We give a slightly different argument. 

5.3. Proposition. Let A be a linearly compact algebra and M a linearly compact 
A-module. Then M is an inverse limit of a jiltered family of jinite-dimensional quotient 
A-modules. 
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Proof. Let m # 0 be an element of M. The fact that any linearly compact vector space 
is a product of copies of the field implies there is an open linear hyperplane H with 

m#H. The continuity of the multiplication A x M + M implies there are open subspa- 
ces B G A and N E M such that BN c H. Since B is open, it has finite codimension, so 

there is a finite set al, . . . , a, of elements of A that generate A/B. For i = 1, . . . , II, there 
is an open subspace Ni E M such that ai Ni c H, using continuity of translation. Then 
HnNnfiy= 1 Ni is an open subspace of H that has the property that AN c H. Thus, 
N’ = {n E M 1 An G H) is open in M. The fact that 1 E A implies that N’ E H, whence 
m#N’. Finally, it is evident that N’ is a submodule. The family of all such quotients is 
filtered, since the intersection of two open submodules is still open. 0 

5.4. Corollary. A linearly compact algebra is afiltered inverse limit offinite-dimensional 
quotients. 

Proof. Just take A 0 AoP as the algebra and A as the module in the above. A sub- 
module is a two-sided ideal, which corresponds to a quotient. Cl 

5.5. The category of finite-dimensional representations. Let A be a linearly compact 
algebra. Let Mod,(A) denote the category of finite-dimensional A-modules. Let 
U : Modr(A) + Vect, the category of K-vector spaces by the obvious underlying 
functor. The ring End(U) of endomorphisms of U has a topology as a subring R of the 
linearly compact ring n U(M), the product taken over all the objects M of Modf(A). 
Since the conditions defining a natural transformation refer to only two coordinates 
at a time, they define a closed, hence linearly compact, subspace. It is clear that any 
element of A determines a natural transformation by left translation. Thus, we have 
a natural map C$ : A + R. 

5.6. Theorem. The map C$ : A -+ R is an isomorphism. 

Proof. First, we show it is an injection. Given any a E A, there is a two-sided ideal I of 
finite codimension in A that does not contain a. But then A/I is a finite-dimensional 
module on which the action of a is non-trivial, so that translation by a corresponds to 
a non-trivial element of R. To show surjectivity, we will show the image is dense and 
then use compactness to infer that the image is all of R. For this, it is necessary to show 
that given any finite number of modules the restriction of any natural transformation 
to the full subcategory they generate can be realized as a translation. Now the 
annihilator of any given module is an open left ideal and thus the common annihilator 
of this finite set is also an open left ideal, which is included in some open two-sided 
ideal I. Then these modules are all in the full subcategory of finitely generated 
R/I-modules and the latter is in Mod,(R). Now let c(: U -+ U be any natural trans- 
formation. Let cr(R/I)(l + I) = a + I. For any R/Z-module M and any m E M, there 
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is anf: R/Z + M such that f(1 + I) = m. From the commutativity of 

RII 
a(RII) 

* RlI 

M *M 
NM 

applied to 1 + I, we see immediately that crM(m) = am. Thus, a is translation by a on 
this finite set of modules. This shows that A --t R is dense and hence surjective. 0 
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